
 69

 L A B 7

Amplitude-Shift
Keying

 70

Prerequisite: Lab 2 – Amplitude Modulation

7.1 Objective
Amplitude-shift keying (ASK) is the simplest form of digital modulation. We will use it to

provide an introduction to digital communications, and as a vehicle to introduce some of the

features that are common to digital communication systems, such as symbol mapping, pulse

shaping, matched filtering, threshold detection, and pulse synchronization.

In this lab project, design of the transmitter and design of the receiver each present challenges

and opportunities for investigation. The lab project is consequently divided into several parts.

The transmitter part investigates creation of the ASK signal and the effect of transmitted pulse

shape on the bandwidth of the transmitted signal. The receiver part investigates demodulation,

matched filtering, and signal detection. There is a third part investigating alignment of the

receiver and transmitter bit streams.

7.2 Part 1: Transmitter

Background

ASK is simply AM with a binary message waveform. To illustrate, suppose  m t is a binary

message represented in a polar, non-return-to-zero (NRZ) format, as shown in Figure 1.

Figure 1. Binary Message Waveform

In the polar NRZ format, a binary 1 is represented by a pulse of amplitude 1 and a binary 0 by

a pulse of amplitude 1 . Each pulse has a duration of T seconds. Let us define an AM signal

as

 71

      1 cos 2 ,ASK cg t A m t f t    (1)

where cf is the carrier frequency and A is the carrier amplitude. It is evident in Eq. (1) that

either    2 cos 2ASK cg t A f t or   0ASKg t  , depending on whether the corresponding

message bit is a 1 or a 0. Thus the carrier is turned “on” to transmit a 1 and “off” to transmit a 0.

This mode of ASK is sometimes referred to as “on-off” keying.

The pulse duration T that appears in Figure 1 will be called the “symbol time” in this and

subsequent lab projects. The “symbol rate” is then 1 T . In a binary modulation method such

as ASK, the symbol rate and the bit rate are identical. We will encounter other modulation

methods, however, such as phase-shift keying, in which multiple bits can be transmitted on

each symbol and the bit rate may therefore be faster than the symbol rate.

As straightforward as ASK is, several distinct steps are needed to actually produce a modulated

signal. These are:

1. Symbol Mapping. The input data arrives as a stream of bits. Bits can be represented in any

of a variety of formats. We will see below that the MT Generate Bits function produces an

array of bytes (8-bit integers) containing the numbers 1 and 0. A bit stream can also be

represented as a Boolean array. In the symbol mapping step, the bits are replaced by

numerical values. For ASK we will represent a binary 1 by the complex double 1 0j and a

binary 0 by the complex double 1 0j  . Note that we are representing bits by complex

numbers, even though the imaginary parts are zero. This is because the USRP requires a

complex-valued input, and because in a future lab we will use the imaginary part to carry

additional data. The complex numbers that represent the input bits are known as

“symbols.” Table 1 shows the ASK symbol mapping.

Table 1. ASK Symbol Mapping

Bit Value Symbol

0 1 0j 

 72

1 1 0j

2. Upsampling. We will see below that the symbols are carried on pulses whose shape is

important in establishing the bandwidth of the transmitted signal. As a first step toward

replacing symbols by pulses, we will place 1L  zeroes after each symbol. This produces a

sample interval of

 ,x

T
T

L
 (2)

or a sample rate of

1 1

.
x

L
T T

 (3)

A higher upsampling factor L makes the D/A conversion in the transmitter easier, but

requires faster digital processing. We will use 20L  in this lab project. The Upsample

function is made to order for implementing this step.

3. Pulse Shaping. If the upsampled signal is applied to a filter whose impulse response  TXg n

is a rectangular pulse of unit amplitude and length L samples, then at the filter output,

each symbol will be represented by a rectangular pulse. Figure 2 shows the effect of

upsampling and filtering. Waveform (a) represents the symbol sequence, with symbols

occurring every T seconds. Waveform (b) shows the symbol sequence after upsampling.

Waveform (c) shows the upsampled symbol sequence after filtering by the pulse-shaping

filter. Note that waveform (c) is a discrete-time version of the polar NRZ message

waveform shown in Figure 1. An important advantage to following this particular sequence

of steps to generate the message waveform is that the impulse response  TXg n of the

pulse-shaping filter does not have to be a rectangular pulse. We will see later in this lab

project that there can be advantages to using other pulse shapes.

 73

(a)

(b)

(c)

Figure 2. (a) Symbol sequence, (b) Upsampled symbol sequence, (c) Filtered

upsampled symbol sequence.

4. Modulation. If  m n represents the message waveform at the transmitter filter output,

then the final step is to apply Eq. (4):

     1 ,ASKg n A m n  (4)

where the constant A is chosen to keep the magnitude of  ASKg n less than 1. This signal

can be sent to the USRP transmitter. The USRP transmitter will perform the D/A

conversion and multiplication by the carrier  cos 2 cf t .

Prelab

1. Create a program to generate an ASK signal using the USRP. A template for the

transmitter has been provided in the file ASKTxTemplate.gvi. This template contains

the four functions for interfacing with the USRP along with MT Generate Bits from the

Modulation Toolkit. MT Generate Bits will create a pseudorandom sequence of bits that

can serve as a data sequence for testing your ASK system. Note that by default, MT

Generate Bits will produce the same sequence of bits every time you run the program.

 74

This is useful for debugging, but if you would like to generate a different sequence of

bits every time, wire a random number to the “seed in” input. The steps below contain

details about how to create the required transmitter.

2. First do the symbol mapping, as shown in Table 1. This will convert the integers 0,1

from MT Generate Bits to complex doubles 1 0j  . In future lab projects, where the

symbol mapping may be more elaborate, this might be implemented as a sub-vi. In this

lab project the symbol mapping is relatively simple, and a sub-vi implementation is

optional.

3. Upsample using Upsample from the AnalysisSignal ProcessingConditioning

subpalette. In this lab project you are given control inputs to set the symbol rate 1 T

and the IQ rate 1 xT . Set the symbol rate to 10,000 symbols/s and the IQ rate to

3200 10 Sa/s . Use these two inputs to calculate the upsampling factor L .

3. Use MT Generate Filter Coefficients from the Modulation Toolkit to generate the pulse

shaping filter. (MT Generate Filter Coefficients can be found on the

AnalysisCommunicationsDigitalUtilities subpalette.) Set the modulation type to

ASK, and the pulse-shaping filter “samples per symbol” to your calculated value of L .

Create a front-panel control for “pulse shaping filter” and set this initially to “none.”

The setting of “none” will generate rectangular pulses. (“none” does not mean that

there is no filter!) Wire the “pulse shaping filter coefficients” output to the “Y” input of a

Convolution. The Convolution is available from the AnalysisSignal Processing

Operation subpalette. Wire the output from your upsampler to the “X” input of the

Convolution.

4. Normalize the amplitude of your filtered message signal to a maximum absolute value

of 1. This will be important later when we investigate alternative pulse shapes. Check

out the Quick Scale 1D in the ExternalFiles folder for finding the maximum of the

absolute value. To ensure that your scaled message remains complex-valued, use a

separate division function to do the actual scaling. (That is, do not use the

    MaxY i X i X output of Quick Scale 1D.)

 75

5. Implement Eq. (4). Let the constant A be 1 2 , so that  ASKg n varies between zero

and one. Combine  ASKg n with xT using the Build Waveform function provided in the

template to produce the “Baseband Signal.” Note that 1 xT is available as the “actual

IQ rate.” Also connect  ASKg n to the “data” input of the Write Tx Data function.

6. An FFT Power Spectrum for 1 Chan has been provided in the template to allow you to

observe the spectrum of the transmitted signal.

This completes construction of the ASK transmitter. Save your transmitter in a file whose

name includes the letters “ASKTx” and your initials (e.g. ASKTx_BAB.gvi).

Lab Procedure

1. Connect a loopback cable and attenuator between the TX 1 and RX 2 connectors of the

USRP. Connect the USRP to your computer and plug in the power to the USRP. Run

LabVIEW and open the transmitter that you created in the prelab.

2. Ensure that the transmitter is set up to use

Carrier Frequency: 915.1 MHz (Note: The 100 kHz offset from the receiver carrier

frequency is deliberate.)

IQ Rate: 200 kHz. Note: This sets the value of 1 xT .

Gain: 0 dB

Active Antenna: TX1

Symbol rate: 10,000 symbols/s

Message Length: 1000 bits

Pulse shaping filter: None

Run the transmitter. Use the large STOP button on the front panel to stop transmission

connectors.

3. After running the transmitter, observe the spectrum of the transmitted signal. You

should be able to clearly see the carrier at frequency “zero.” Two additional features are

significant: the bandwidth and the rate of spectral rolloff. Using the Capture Data

 76

feature or using cursors on the Power Spectrum graph, measure the null-to-null

bandwidth of the transmitted signal. Relate this bandwidth to the symbol rate 1 T .

The rate of spectral rolloff is a measure of the interference that your signal will cause to

signals using nearby carrier frequencies. Print a copy of the spectrum for comparison

with the spectrum you will obtain in Step 4 below.

4. Rectangular pulses are rarely used in practice because of the very gradual spectral

rolloff they produce. Change the pulse-shaping filter to “Root Raised” for a root-raised-

cosine filter. Run the program examine the spectrum again. Measure the null-to-null

bandwidth of the transmitted signal. Print a copy of the spectrum and compare the

rolloff rate with the spectrum you obtained using rectangular pulses.

Questions

1. In step 2 you are given
1

𝑇
= 10,000

𝑠𝑦𝑚𝑏𝑜𝑙𝑠

𝑠
 and

1

𝑇𝑥
= 200 ∗ 103

𝑆𝑎

𝑠
. Find the

corresponding value for the number of samples per symbol L .

2. Relate the symbol rate to the null-to-null bandwidth of the ASK signal for (a)

rectangular and (b) root-raised-cosine pulses.

3. Compare the rates of spectral rolloff of the transmitted signal for rectangular and root-

raised-cosine pulses.

7.3 Part 2: Receiver

Background

An ASK receiver begins as an analog AM receiver. We will offset the transmitter and receiver

carrier frequencies by 100 kHz, so that the signal retrieved from the USRP receiver will be an AM

signal having an “intermediate” carrier frequency of 100 kHz. The retrieved AM signal will be

passed through a bandpass “intermediate frequency” filter and then demodulated using an

envelope detector. The envelope detector is implemented by taking the magnitude of the

bandpass filter output, and then lowpass filtering using a second filter. If you completed Lab 2,

Amplitude Modulation, these steps should be familiar.

 77

For digital communications, the lowpass filter should be designed to minimize the effects of

noise and to also minimize the effects of intersymbol interference that can be caused when the

filtered received pulses overlap. The best filter for eliminating noise is a so-called “matched”

filter. A matched filter has a frequency response whose magnitude matches the magnitude of

the frequency response of the transmitter’s pulse-shaping filter. That is, if  RXg n is the

impulse response of the receiver’s filter, then we want    j j

RX TXG e G e  . By using MT

Generate Filter Coefficients at both the transmitter and receiver, we will ensure that the

appropriate receiver filter is chosen to match the pulse-shaping filter at the transmitter.

To complete the digital receiver, several additional steps follow the AM demodulator.

1. Pulse Synchronization. The AM receiver output is an analog baseband signal that must be

sampled once per symbol time, i.e. once every T seconds. Because of filtering and

propagation delays and distortion caused by the communication channel, it is necessary to

determine the optimum time to take these samples. A function PulseAlign(real) has been

provided in the BasicUSRPLabs folder to align the baseband signal so that the sample at

index 0 is the correct first sample.

2. Sampling. The Decimate function will sample the aligned baseband waveform at index 0

and every T seconds thereafter.

3. Detection. Once the baseband waveform has been sampled, each sample must be

examined to determine whether it represents a symbol of value 1 or a symbol of value 0.

4. Symbol Mapping. The detected symbol values must be converted to bits. For ASK, this

step is easily included in the detection step.

Prelab

1. A template for the receiver has been provided in the file ASKRxTemplate.gvi. This template

contains the six interface functions for interfacing with the USRP.

 78

We want the receiver to capture two frames of data each time it is run. Since the receiver’s

starting point is random, this will ensure that there will always be one complete frame in the

captured data. Using the message length and symbol rate available from front panel inputs,

and the “Actual IQ Rate” available from Configure Signal, have the receiver calculate the

number of samples in a frame. Then double this number and provide the result as the

“number of samples” input to the Fetch Rx Data.

Fetch Rx Data returns a complex double waveform. Pass the complex double waveform

through a bandpass filter. Filters can be found in the palette Analysis>>Signal

Processing>>Filters. Configure a fifth-order Chebyshev Filter with a high cutoff frequency of

110 kHz and a low cutoff frequency of 90 kHz. The default passband ripple of 0.1 dB is

acceptable.

2. Get the “Y” component of the waveform at the output of the Chebyshev filter by using the

Waveform Properties function. Extract the real part of the complex array from the “Y”

component of the waveform. To obtain the envelope, take the absolute value and pass the

result through a matched filter. The absolute value functions as a full-wave rectifier. For

the matched filter, use MT Generate Filter Coefficients just as you did for the transmitter.

Set the modulation type to ASK, and calculate the “matched samples per symbol” M from

the “actual IQ rate (1 zT)” and the symbol rate (1 T) obtained from the front-panel control.

Create a front-panel control for “pulse shaping filter” and set this initially to “none.” The

setting of “none” will generate a matched filter with a rectangular impulse response (not

the absence of a filter, as you might imagine). Wire the “matched filter coefficients” output

to the “Y” input of a Convolution. The Convolution is available from the AnalysisSignal

Processing Operation subpalette. The output of your matched filter should be connected

to the Cluster Properties function provided in the template. The Cluster Properties function

feeds the Baseband Output graph.

3. A convenient way to visualize the output of a digital demodulator is the so-called “eye

diagram.” An eye diagram is a plot of the baseband output signal with the horizontal axis

scaled to be one or two symbol times long and successive symbols superimposed.

 79

Optimum Decision Threshold

Optimum Sampling Time

Intersymbol Interference

Figure 3. Stylized Eye Diagram

Figure 3 shows a stylized eye diagram. Some of the useful information that can be learned

from the eye diagram is shown in the figure.

The Modulation Toolkit function MT Format Eye Diagram has been provided in the receiver

template. Wire the baseband output waveform to the “waveform” input. The “symbol rate

(Hz)” input value is available from the front panel control. Set the “eye length” parameter

to 2.

4. Place the PulseAlign(real) on your block diagram and wire the baseband output waveform to

the “input waveform” input and wire the calculated M samples/symbol value to the

“receiver sampling factor” input.

Once the baseband waveform is aligned, it can be sampled. Decimate (single shot) can be

obtained from the AnalysisSignal ProcessingConditioning subpalette. The “decimating

factor” is M .

5. To determine whether each received sample is more likely to represent a 1 or a 0, the

sample must be compared with a threshold. Use the Mean (DBL) function to compute the

threshold. This function is one configuration of the Measures of Mean function which can be

found in the MathStatistics subpalette. The result of the comparison is the receiver’s

digital output. The output of the comparison will be a Boolean array. You can convert this

array to an integer array by using a Boolean To Integer function.

 80

This completes construction of the ASK receiver. Save your receiver in a file whose name

includes the letters “ASKRx” and your initials (e.g. ASKRx_BAB.gvi).

Lab Procedure

1. Ensure that the receiver is set up to use

Carrier Frequency: 915.0 MHz

IQ Rate: 400 kHz

Gain: 0 dB

Active Antenna: RX2

Symbol rate: 10,000 symbols/s

Message length: 1000 bits

Pulse shaping filter: none

2. Run the transmitter, then run the receiver. Once the receiver has acquired a block of data,

you may stop the transmitter.

3. Use the horizontal zoom feature on the Baseband Output graph palette to expand the

demodulated waveform so that you can see individual pulses. Ideally, rectangular pulses

passed through the receiver’s matched filter should produce triangular output pulses. Note

whether the demodulated pulses have the expected shape.

4. Observe the eye diagram. Make note of the optimum sampling time and the presence of

intersymbol interference.

5. Change the “pulse shaping filter” control at both the transmitter and the receiver to “Root

Raised” for root-raised-cosine filters. Setting both the transmitter and receiver filters will

ensure that the filters remain matched for optimum performance in the presence of noise.

The cascade of two root-raised-cosine filters produces a raised-cosine pulse at the receiver

filter output. The raised-cosine pulse is designed to minimize, or ideally eliminate,

intersymbol interference.

 81

Run the transmitter and then run the receiver. Once the receiver has acquired a block of

data, you may stop the transmitter. Observe the baseband output signal and the eye

diagram. Comment on the changes to the eye diagram. Has intersymbol interference been

reduced?

6. To see the effect of pulse synchronization, move the waveform input of MT Format Eye

Diagram to the “aligned waveform” output of PulseAlign(real). Run the transmitter and

receiver again. Observe the eye diagram. What is the optimum sampling time now?

 82

Questions

1. Give a formula showing how the IQ Sampling Rate, the symbol rate 1 T , and the number

of samples per symbol M are related. Determine the value of M for an IQ Sampling Rate

of 1 MHz and a symbol rate of 10,000 symbols/s.

2. Note that the IQ sampling rate at the receiver is different from the IQ sampling rate at the

transmitter. Using a higher IQ sampling rate requires faster digital processing. What is the

advantage to using a higher IQ sampling rate at the receiver? (Hint: It has something to do

with the action of the PulseAlign(real) and the value of M .)

3. Compare the rectangular and raised-cosine pulse shapes by examining the eye diagrams.

What evidence for intersymbol interference do you see in each case?

4. Using root-raised-cosine pulses and receiver filtering, observe the eye diagram when the

input of MT Format Eye Diagram is set to “baseband output” and when the input of MT

Format Eye Diagram is set to the “aligned waveform” output of PulseAlign(real). What

function is PulseAlign(real) performing?

5. The transmitter is programmed to generate the same “frame” of 1000 symbols over and

over. The receiver grabs a single block of 2000 symbols each time it is run. Can you

identify, by examining the receiver’s baseband output plot, where the symbol sequence

ends and starts over? Frame synchronization of the receiver is an essential component of a

digital communication system. We will examine frame synchronization in the next part of

this lab project.

7.4 Part 3: Aligning the Received Bits
At this point you have a working transmitter and receiver, but it is hard to know whether the

two are working together correctly as a system unless you can compare the received bits with

the transmitted bits and verify that the bit patterns are the same. To allow this comparison, it is

necessary that the receiver recognize the beginning of the transmitted sequence. The

AddFrameHeader(real), available in the BasicUSRPLabs folder, inserts a specific 26-bit sequence

at the start of transmission. At the receiver, the FrameSync(real), also available in the

BasicUSRPLabs folder, looks for this specific sequence and cuts off all bits received before this

 83

frame header. The FrameSync(real) also cuts off the frame header. This way, the bit sequence

at the output of the receiver should match the bit sequence sent to the transmitter.

1. Add the AddFrameHeader(real) to the transmitter. Place AddFrameHeader(real) after the

symbol mapping, but before conversion of the symbols to complex.

2. Add the FrameSync(real) to the receiver. Place FrameSync(real) immediately following

Decimate. Wire the output of Decimate to the “Sampled Input” of FrameSync(real). Leave

the remaining inputs of FrameSync(real) unwired. Wire the “Aligned Samples” output of

FrameSync(real) to the threshold comparison function and to Mean described in Receiver

Prelab, Section 5.

Wire the array of output bits from the threshold comparison to the “array” input of an Array

Subset function. Set the “index” input to zero, and set the “length” input to the length

specified by the “message length” control. Display the output of Array Subset function as

“Output bits” on the receiver front panel.

Note that the “Output Signal” and “max index” outputs of FrameSync(real) will not be used

in this lab project.

3. Run the transmitter; then run the receiver; then stop the transmitter. Compare the first

dozen or so received bits with the corresponding transmitted bits.

4. Measurement of the bit error rate (BER) can be automated using the MT Calculate BER from

the Modulation Toolkit (Analysis Communications DigitalMeasurements subpalette).

From the Configure ribbon, select “PN Fibonacci.” Set the “BER trigger threshold” to 0.4.

Connect indicators to the “BER” and “trigger found?” outputs. When you run the program,

“trigger found?” will be true whenever the measured BER is below the BER trigger

threshold. Run the transmitter and receiver. The measured BER should be identically zero

unless you add noise.

Questions

1. In step 3, do the received bits match the transmitted bits?

 84

2. What would the measured BER be if there were something wrong with the receiver’s bit

alignment? Note that when the measured BER is higher than the BER trigger threshold, the

“trigger found?” output will be false, and any BER reading shown will not be meaningful.

7.5 Report

Prelab

Hand in documentation for the programs you created for the transmitter and receiver. Also

include documentation for any functions you created. To obtain documentation, print out

legible screenshots of the front panel and block diagram.

Lab

Submit the programs you created for the transmitter and receiver. Also submit any functions

you created. Be sure your files adhere to the naming convention described in the instructions

above.

Resubmit documentation for any functions you modified during the lab.

Answer all of the questions in each of the sections marked Questions above.

