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Prerequisites:  Lab 5 – Double-Sideband Suppressed Carrier, Lab 

7 – Amplitude-Shift Keying 

 

9.1 Objective 
In phase-shift keying (PSK), information is encoded on the phase of the transmitted carrier, 

rather than on its amplitude (ASK) or its frequency (FSK).  In binary phase-shift keying (BPSK) 

there are two phase values, 0  and 180 , which means that an unmodified carrier is 

transmitted to represent one binary data value, while an inverted carrier is transmitted to 

represent the other binary data value. 

 

BPSK is the digital version of double-sideband suppressed-carrier analog modulation.  We will 

see that the BPSK transmitter and receiver have a DSB-SC transmitter and receiver at their 

core.  The additional features such as symbol mapping, pulse shaping, matched filtering, 

threshold detection, and pulse and frame synchronization that are needed in ASK and FSK 

systems are also needed in PSK systems.  Just as in DSB-SC, the absence of a transmitted 

carrier leads to a reduction in power needed for a given level of performance.  BPSK is optimum 

among binary systems in providing the lowest average power needed for a given bit error rate.  

BPSK is easily extended to quadrature phase-shift keying (QPSK) and quadrature amplitude 

modulation (QAM), as we shall see in a subsequent lab exercise.  These extensions allow 

transmission of multiple bits per pulse and can be very effective for transmitting data at high 

rates over a channel of limited bandwidth. 

 

Demodulating a BPSK signal requires synchronizing the phase of the received signal.  Phase 

synchronization was also encountered in the DSB-SC lab project.  We will see that the 

difficulties of phase synchronization can be avoided, at a small performance penalty, by using 

differential encoding of the transmitted data.  Differential binary phase-shift keying (DPSK) is a 

robust and efficient modulation method that is widely used in practice. 

 

9.2 Background 
The generation and detection of an analog DSB-SC signal is discussed at length in the 

background section of Lab 5:  Double-Sideband Suppressed-Carrier.  It is strongly suggested that 

this material be reviewed at this point. 
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Transmitter 

A binary phase-shift keyed signal is a train of pulses, each of the form 

    cos 2 .TX cAg t f t    (1) 

In Eq. (1), A  is a constant that sets the transmitted power level,  TXg t  is a fixed pulse shape, 

cf  is the carrier frequency, and   takes a value of either 0  or 180  to carry the desired 

information.  Note that we can also write Eq. (1) as 

    cos 2 ,TX cAg t f t   (2) 

where the plus sign corresponds to 0    and the minus sign to 180   .  We will assume, as 

in the previous digital signaling lab projects, that a new pulse is transmitted every T  seconds, 

so that the symbol rate is 1 T  symbols/s.  For a binary scheme such as BPSK, the bit rate is the 

same as the symbol rate.  Since the pulse  TXg t  does not carry information, its shape can be 

chosen to satisfy other criteria.  As was the case with ASK, we desire a pulse shape that provides 

a rapid spectral rolloff and minimizes intersymbol interference.  We will use the “root-raised-

cosine” pulse shape, as we did in the ASK lab. 

 

The steps needed to form a BPSK signal should be familiar if you have completed the ASK lab 

project: 

 

1. Symbol Mapping.  The input data arrives as a stream of bits.  Recall that the MT Generate 

Bits function produces an array of bytes containing the numbers 1 and 0.  In the symbol 

mapping step, the bits are replaced by numerical values.  For BPSK we will represent a 

binary 1 by the complex double 1 0j  and a binary 0 by the complex double 1 0j  .  Note 

that we are representing bits by complex numbers, even though the imaginary parts are 

zero.  This is because the USRP requires a complex-valued input, and because in a future lab 

we will use the imaginary part to carry additional data.  Table 1 shows the BPSK symbol 

mapping. 

 

Table 1.  BPSK Symbol Mapping 

Bit Value Symbol 
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0 1 0j    

1 1 0j   

 

 

 

2. Upsampling.  As a first step toward replacing symbols with pulses, we will place 1L   

zeros after each symbol.  This produces a sample interval of  

 ,x

T
T

L
   (3) 

or a sample rate of 

 
1 1

.
x

L
T T

   (4) 

A higher upsampling factor L  makes the D/A conversion in the transmitter easier, but 

requires faster digital processing. 

 

3. Pulse Shaping.  If the upsampled signal is applied to a filter whose impulse response  TXg n  

is a root-raised-cosine pulse, then each symbol at the filter output will be represented by a 

root-raised-cosine pulse.  Steps 1 through 3 convert the input bit stream to a polar message 

signal.  Note that pulse shapes other than root-raised-cosine can be used simply by 

changing the shape of the impulse response  TXg n .  The root-raised-cosine pulse has a 

very rapid spectral rolloff, so that the transmitted signal will not cause interference to 

signals at nearby carrier frequencies. 

 

4. Modulation.  The polar message signal, consisting of a train of pulses of the form 

   1 0 TXj g n  , can be sent directly to the USRP transmitter.  The USRP will convert the 

signal to continuous time and add the carrier as shown in Eq. (2). 
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Receiver 

A PSK receiver begins with a DSB-SC demodulator.  When the transmitted BPSK signal arrives 

at the receiver it has the form of a train of pulses, each given by 

      cos 2 ,TX cr t Dg t f t      (5) 

where D  is a constant (usually much smaller than the constant A  in the transmitted signal) 

and the angle   represents the difference in phase between the transmitter and receiver carrier 

oscillators.  If the receiver’s carrier oscillator is set to the same frequency as the transmitter’s 

carrier oscillator, the USRP receiver will do most of the work in demodulating the BPSK signal.  

The receiver’s Fetch Rx Data will provide a train of output pulses, each given by 

     .
2

j

TX

D
r n g n e     (6) 

The sampling rate in Eq. (6), 1 zT , is set by the receiver’s “IQ rate” parameter.  This rate is set to 

provide M  samples every T  seconds, where 1 T  is the symbol rate. 

 

We can remove the phase offset   using any one of a variety of techniques.  The technique used 

in the DSB-SC lab project works well.  To summarize, we begin by squaring  r n , giving 

    
2

2 2 2 .
4

j

TX

D
r n g n e    (7) 

This step eliminates phase changes caused by the data, as well as phase changes caused by 

changes in the polarity of  TXg n .  Next, the angle 2  can be extracted using a Complex to 

Polar function from the Data TypesNumericComplex palette.  It turns out to be helpful at 

this point to smooth variations in 2  caused by noise.  The median filter (AnalysisSignal 

ProcessingFiltersSpecial Filters) does a good job.  The default values can be accepted for 

the “left rank” and “right rank” parameters.  Next the Unwrap Phase from the AnalysisSignal 

ProcessingConditioning palette will remove jumps of 2 .  Finally, dividing by two gives the 

desired estimate of the phase error  .  The block diagram in Figure 1 shows the entire phase 

synchronization process. 
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Figure 1.  Carrier Phase Synchronization 

 

 

The remaining steps carried out by the receiver should be familiar from the ASK and FSK labs.  

These steps are: 

 

1. Matched Filtering.  We will use a root-raised-cosine receiver filter.  This filter’s impulse 

response  RXg n  is matched to the pulse shape  TXg n  of the received pulses.  The 

matched filter gives optimum performance in the presence of additive, white, Gaussian 

noise.  Further, the cascade of the two root-raised-cosine filters  TXg n  and  RXg n  

produce a raised-cosine pulse shape that is free from intersymbol interference. 

 

2. Pulse Synchronization.  The matched filter output is an analog baseband signal that must 

be sampled once per symbol time, i.e. once every T  seconds.  Because of filtering, 

propagation delays, and distortion caused by the communication channel, it is necessary to 

determine the optimum time to take these samples.  A function called PulseAlign(real) has 

been provided to align the baseband signal so that the sample at index 0 is the correct first 

sample. 

 

3. Sampling.  The Decimate function will sample the aligned baseband waveform at index 0 

and every T  seconds thereafter. 

 

4. Detection.  Once the baseband waveform has been sampled, each sample must be 

examined to determine whether it represents a symbol of value 1 or a symbol of value 0.   

 



  105 

5. Symbol Mapping.  The detected symbol values must be converted to bits.  For binary PSK, 

this step is easily included in the detection step. 

 

 

9.3 Pre-Lab  

Transmitter 

1. Create a program to generate a BPSK signal using the USRP.  A template for the transmitter 

has been provided in the file BPSKTxTemplate.gvi.  This template contains the four  

functions for interfacing with the USRP along with MT Generate Bits from the Modulation 

Toolkit.  MT Generate Bits will create a pseudorandom sequence of bits that can serve as a 

data sequence for testing your BPSK system.  Note that by default, MT Generate Bits will 

produce the same sequence of bits every time you run the program.  This is useful for 

debugging, but if you would like to generate a different sequence of bits every time, wire a 

random number to the “seed in” input.  The steps below contain details about how to create 

the required transmitter. 

 

2. First do the symbol mapping, as shown in Table 1. 

 

3. Upsample the array of symbols using Upsample from the AnalysisSignal 

ProcessingConditioning subpalette.  In this lab project you are given control inputs to set 

the symbol rate 1 T  and the IQ rate 1 xT .  Set the symbol rate to 10,000 symbols/s and the 

IQ rate to 3200 10  Sa/s .  Use the symbol rate and coerced IQ rate to calculate the 

upsampling factor L . 

 

 

4. Use MT Generate Filter Coefficients from the Modulation Toolkit to generate the pulse 

shaping filter.  (MT Generate Filter Coefficients can be found on the Analysis 

CommunicationsDigitalUtilities subpalette.)  Set the modulation type to PSK, and the 

pulse-shaping filter “samples per symbol” to your calculated value of L .  Create a front-

panel control for “pulse shaping filter” and set this to “Root Raised.”  Wire the “pulse 

shaping filter coefficients” output to the “Y” input of a Convolution.  The Convolution is 

available from the AnalysisSignal ProcessingOperation subpalette.  Wire the output 

from your upsampler to the “X” input of the Convolution. 
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5. Normalize the amplitude of your filtered message signal to a maximum absolute value of 1.  

The Quick Scale 1D function in the ExternalFiles folder will find the maximum of the absolute 

value.  To ensure that your scaled message remains complex-valued, use a separate division 

function to do the actual scaling.  Connect the scaled message to the Build Waveform 

function that connects to the Baseband Waveform graph provided in the template. Also 

send the scaled message to the Write Tx Data function. 

 

6. To observe the spectrum of the transmitted signal, wire the complex baseband waveform 

to the Power Spectrum for 1 Chan(CDB) that connects to the Power Spectrum graph 

provided in the template. 

 

This completes construction of the BPSK transmitter.  Save your transmitter in a file whose 

name includes the letters “BPSKTx” and your initials (e.g. BPSKTx_BAB.gvi).   

 

Receiver 

1. Create a program to implement a BPSK receiver using the USRP.  A template for the 

receiver has been provided in the file BPSKRxTemplate.gvi.  This template contains the six 

interface functions for interfacing with the USRP. 

 

Calculate the “number of samples” for the Fetch Rx Data function to fetch using the 

message length, symbol rate front panel inputs and the coerced IQ rate.  Double the 

number of samples the receiver will fetch to acquire two frames of data.  Since the 

receiver’s starting point is random, this ensures that there will be one complete frame of 

received data in the block of samples fetched. 

 

Implement the carrier phase synchronization as shown in Figure 1. 

 

2. To implement the receiver’s matched filter, use MT Generate Filter Coefficients just as you 

did for the transmitter.  Set the modulation type to PSK, and calculate the “matched 

samples per symbol” M  from the “actual IQ rate (1 zT )” and the symbol rate (1 T ) 

obtained from the front-panel control.  Create a front-panel control for “pulse shaping 

filter” and set this to “Root Raised.”  Wire the “matched filter coefficients” output to the “Y” 

input of a Convolution.  The output of your pulse shaping filter should be connected to the 
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Cluster Properties function provided in the template.  The Cluster Properties function feeds 

the Baseband Output graph. 

 

3. Place the PulseAlign (real) function from the ExternalFiles folder on your block diagram and 

wire the baseband output waveform to the “input waveform” input and wire the M  

samples/symbol to the “receiver sampling factor” input. 

 

Once the baseband waveform is aligned, it can be sampled.  The Decimate (single shot) 

function can be obtained from the AnalysisSignal ProcessingConditioning subpalette.  

The “decimating factor” is M . 

 

4. The Modulation Toolkit function MT Format Eye Diagram has been provided in the receiver 

template.  Wire the baseband output waveform to the “waveform” eye-diagram input.  The 

“symbol rate (Hz)” input value is available from the front panel control.  Set the “eye length” 

parameter to 2.   

 

5. To determine whether each received sample is more likely to represent a 1 or a 0, the 

sample must be compared with a threshold.  Because the message is a polar signal, the 

threshold can be taken as zero.  The result of this comparison is the receiver’s digital output.  

The output of the comparison will be a Boolean array.  You can convert this array to an 

integer array by using a Boolean To Integer function. 

 

This completes construction of the BPSK receiver.  Save your receiver in a file whose name 

includes the letters “BPSKRx” and your initials (e.g. BPSKRx_BAB.gvi).   

 

Questions 

1. In Transmitter Step 3 you are given 1 10,000 symbols/sT   and 
31 200 10  Sa/sxT   .  

Find the corresponding value for the number of samples per symbol L . 

 

2. Eq. (6) in the Background section above shows that the received baseband signal  r n  

includes a factor je  , where   is any phase difference that may exist between the 

transmitter and receiver carrier oscillators.  Explain what would happen if you omitted the 
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phase synchronization step in the receiver.  Specifically, what would be the receiver output 

if   just happened to take the value 2 ? 

 

3. In Receiver Step 2 the “actual IQ rate” 1 zT may be different from the rate 1 xT  that was 

used at the transmitter. ( Note that the symbol rate 1 T  must be the same at the 

transmitter and receiver.)  The value of the receiver’s IQ rate determines the receiver 

sampling factor M .  What is the advantage to using a higher value of M ?  What is the 

advantage of using a lower value of M ? 

 

4. Although BPSK is a suppressed-carrier version of ASK, we do not use an envelope detector 

to demodulate BPSK the way we did for ASK.  Why is that?  What would the receiver output 

be if we used an envelope detector for demodulation? 

 

5. Bit error rate is a measure of performance of a digital communication system.  What would 

the bit error rate be if the transmitter failed and the receiver received only noise?  Explain 

your reasoning. 

 

9.4 Lab Procedure 
1. Connect a loopback cable and attenuator between the TX 1 and RX 2 connectors of the 

USRP.  Connect the USRP to your computer and plug in the power to the USRP.  Run 

LabVIEW and open the transmitter that you created in the prelab. 

 

2. Ensure that the transmitter is set up to use 

Carrier Frequency:  915.0 MHz 

IQ Rate:  200 kHz.  Note:  This sets the value of 1 xT . 

Gain:  0 dB. 

Active Antenna:  TX1 

Symbol rate:  10,000 symbols/s 

Message Length:  1000 bits 

Pulse shaping filter:  Root Raised 
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Run the transmitter.  Use the large STOP button on the front panel to stop transmission 

connectors. 

 

3. After running the transmitter, observe the spectrum of the transmitted signal.  Measure the 

“main lobe” bandwidth of the transmitted signal.  Change the pulse shaping filter control to 

“none” to create rectangular pulses and run the transmitter again.  Compare the spectrum 

of the transmitted signal with the spectrum for root-raised-cosine pulses.  Return the pulse 

shaping filter control setting to “Root Raised.” 

 

4.  Ensure that the receiver is set up to use 

Carrier Frequency:  915.0 MHz 

IQ Rate:  400 kHz.  Note:  This sets the value of 1 zT . 

Gain:  0 dB 

Active Antenna:  RX2 

Symbol rate:  10,000 symbols/s 

Message Length:  1000 bits 

Pulse shaping filter:  Root Raised 

 

5. Run the transmitter, then run the receiver.  Once the receiver has acquired a block of data, 

you may stop the transmitter. 

 

6. Observe the eye diagram.  Make note of the optimum sampling time and the presence or 

absence of intersymbol interference.  To see the effect of pulse synchronization, move the 

waveform input of MT Format Eye Diagram to the “aligned waveform” output of 

PulseAlign(real).  Run the transmitter and receiver again.  Observe the eye diagram.  What is 

the optimum sampling time now? 

 

7. Modify the transmitter to include the AddFrameHeader(real), available in the 

BasicUSRPLabs folder.  Place AddFrameHeader(real) after the symbol mapping, but before 

conversion of the symbols to complex.  Next, modify the receiver to include the 

FrameSync(real), also available from the BasicUSRPLabs folder.  Place FrameSync(real) 
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immediately following Decimate.  Wire the output of Decimate to the “Sampled Input” of 

FrameSync(real).  Leave the remaining inputs of FrameSync(real) unwired.  Wire the 

“Aligned Samples” output of FrameSync(real) to the threshold comparison function. 

 

Wire the array of output bits from the threshold comparison to the “array” input of an Array 

Subset function.  Set the “index” input to zero, and set the “length” input to the length 

specified by the “message length” control.  Display the output of Array Subset function as 

“Output bits” on the receiver front panel. 

 

Note that the “Output Signal” and “max index” outputs of FrameSync(real) will not be used 

in this lab project. 

 

8. Automate measurement of the bit error rate (BER) by using the MT Calculate BER from the 

Modulation Toolkit (Analysis CommunicationsDigitalMeasurements subpalette).  

From the Configure ribbon, choose “PN Fibonacci.” Set the “BER trigger threshold” to 0.4.  

Connect indicators to the “BER” and “trigger found?” outputs.  When you run the program, 

“trigger found?” will be true whenever the measured BER is below the BER trigger 

threshold. 

 

Run the transmitter and receiver.  If everything is working correctly, the BER should be 0 or 

1.0.  Run the transmitter and then run the receiver a dozen times or so.  Verify that about 

half the time the BER is 0 and about half the time the BER is 1.0. 

 

Questions 

1. How do the main lobe bandwidth and spectral rolloff rate for root-raised cosine pulses 

compare with the same quantities when rectangular pulses are used? 

 

2. What does a BER of 1.0 signify?  Explain why the BER is 0 half the time and 1.0 half the time. 

 

Differential Encoding 

Suppose the data bits are passed through the logic circuit shown in Figure 2 before being sent 

to the transmitter.  In this circuit, the exclusive-nor gate will produce a 0 whenever the current 
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input differs from the previous output, and a 1 whenever the current input is the same as the 

previous output. 

 

Q

Q
SET

CLR

D

 

Figure 2.  Differential Encoder 

For example, an input of 

 1 0 1 1 0 0 0 1   

produces an output of  

 0 0 1 1 1 0 1 0 0  , 

assuming that the flip-flop has an initial state of 0.  Now suppose that the received bit sequence 

is passed through the circuit shown in Figure 3.  The output will be a 1 whenever the current 

 

Q

Q
SET

CLR

D

 

Figure 3. Differential Decoder 

input and the previous input are the same, and the output will be a 0 whenever the current input 

and the previous input are different.  For example, a received bit sequence of 

 0 0 1 1 1 0 1 0 0   

produces an output of  

 1 0 1 1 0 0 0 1 .  

We see that the decoder of Figure 3 reverses the effect of the encoder of Figure 2.  The 

important part of this is to notice what happens if the received bit pattern is inverted.  If the 

received bit sequence is  

 1 1 0 0 0 1 0 1 1 ,  

“same” and “different” are not altered, and so the decoder output will still be 

 1 0 1 1 0 0 0 1 .  
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9. Add a differential encoder to your BPSK transmitter and a differential decoder to your 

receiver.  Place the encoder immediately after MT Generate Bits, before the symbol 

mapping.  Place the decoder after the threshold.  Note that your transmitted sequence will 

have to be made one bit longer to include the initial state of the encoder flip-flop. 

 

Hint:  The D flip-flop creates a one-sample delay.  The delay is easily implemented in 

LabVIEW using a Feedback Node function from the Programming Flow palette. 

 

10. Run the transmitter and then run the receiver a dozen times or so.  You should find that the 

BER is always zero. 

 

Differential Encoding, Part 2 

Differential encoding can be done after the symbol mapping.   

Table 2 is a truth table showing the correspondence between the exclusive-nor operation and 

ordinary multiplication.  We will see below that the differential encoding allows the phase 

synchronizer to be eliminated from the receiver circuit. 

 

Table 2.  Exclusive Nor and Numerical Multiplication 

Boolean  Numerical 

Input Output  Input Output 

0 0 1  1   1  1  

0 1 0  1  1   1  

1 0 0  1  1  1  

1 1 1  1  1  1  

 

11. Implement the differential encoder numerically.  Place the encoder in your transmitter 

following AddFrameHeader(real).  (This time the frame header also gets encoded.)  Do not 

forget to add the initial state of the encoder to the beginning of the transmitted sequence.   
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Save your transmitter in a file whose name includes the letters “DPSKTx” and your initials 

(e.g. DPSKTx_BAB.gvi).   

 

12. In the receiver, remove the phase synchronizer and run the received data directly to the 

Convolution that implements the matched filter.  Place the differential decoder immediately 

after Decimate, the receiver’s sampler, and before FrameSync(real).  Since the received data 

are complex-valued at this point, design your decoder to form the product of the current 

sample and the complex conjugate of the previous sample.  Then take the real part of the 

result. You may also need to replace PulseAlign(real) with PulseAlign(Complex). 

 

Save your receiver in a file whose name includes the letters “DPSKRx” and your initials (e.g. 

DPSKRx_BAB.gvi).   

 

12. Run the transmitter and then run the receiver several times.  Verify that the BER is always 

zero. 

 

Questions 

1. Show that the differential encoder of Figure 2 and the differential decoder of Figure 3 

continue to work properly as a system if the encoder’s flip-flop has an initial state of 1. 

 

2. Show, starting with Eq. (6), why the phase synchronizer is not needed in the DPSK receiver. 

 

3. In the BPSK system, the eye diagram has the same amplitude every time you run the 

receiver.  In the DPSK system, the amplitude of the eye diagram changes on every run.  

Explain why this happens.  Explain whether, if noise were present, the BER would also 

change every time the DPSK receiver is run. 

 

7. Differential phase-shift keying is intended to be robust in the presence of a phase difference 

between the transmitter and receiver oscillators.  It is also possible for there to be a 

frequency difference between the oscillators.  Suppose there is a small frequency difference 

of f  between the transmitter and receiver oscillators.  Modify Eq. (6) to take this 

frequency difference into account.  How will the output of the DPSK receiver change 
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because of this frequency difference?  Using the parameter values of this lab project, 

determine how large a frequency difference will be “significant.”  Be sure to specify what 

you mean by “significant.” 

 

9.5 Report 

Prelab 

Hand in documentation for the programs you created for the transmitter and receiver.  Also 

include documentation for any functions you created.  To obtain documentation, print out 

legible screenshots of the front panel and block diagram. 

 

Answer all of the questions in the Prelab section marked Questions. 

 

Lab 

Submit the program you created for the transmitter and receiver.  Include both the BPSK and 

DPSK programs.  Also submit any functions you created.  Be sure your files adhere to the 

naming convention described in the instructions above. 

 

Submit documentation for the DPSKTx and DPSKRx programs.  Resubmit documentation for 

any functions you modified during the lab. 

 

Answer all of the questions in each of the Lab Procedure sections marked Questions above. 

  


