
  125 

 L A B  1 1   

 

Equalization 
 

 

  



  126 

Prerequisite:  Lab 10 – The Eye Diagram 

11.1 Objective 
In most digital communication systems, the transmitter’s pulse shaping filter and the receiver’s 

matched filter are designed so that the pulses that emerge from the receiver’s matched filter do 

not exhibit any intersymbol interference.  As we discussed in the eye diagram lab project, 

however, the communication channel often introduces additional filtering that can result in 

intersymbol interference. 

 

One way to deal with intersymbol interference created by the communication channel is to add 

an additional filter in the receiver.  Ideally, this new filter will have a response that is “inverse” to 

the filtering caused by the channel.  A filter intended to counter the adverse effects of channel 

filtering is called an equalizer. 

 

In wireless systems, the channel distortion is often caused by multipath propagation.  That is, 

the received signal may include reflections from buildings and other objects in the environment.  

The distortion that is observed in any particular wireless link will depend on the location of the 

transmitter, the location of the receiver, and the locations of nearby reflecting objects.  Since 

the transmitter, the receiver, and even some of the reflecting object can move, channel 

distortion can change gradually with time.  In this kind of application it is helpful to have an 

equalizer that is adaptive; that is, we would like the equalizer to be able to change its properties 

slowly with time to follow changes in the channel. 

 

In this lab project you will use the BPSK transmitter and receiver that you created for Lab 9 as a 

“test bed” system.  The Channel.gvi that you used in the eye diagram lab project will create the 

intersymbol interference.  The equalizer that we will investigate is provided in the Modulation 

Toolkit. 

 

11.2 Background 
Equalizers, particularly adaptive equalizers, are nearly always implemented as FIR filters.  There 

are two reasons for this.  First, and most important, a FIR filter is always stable.  As a result, we 

do not have to be concerned that the equalizer might become unstable as it adapts.  Second, it 

sometimes turns out that the “optimum” equalizer is not causal.  A non-causal FIR filter can 

always be made causal by adding a finite delay.  This easy fix cannot be applied to a non-causal 

IIR filter. 



  127 

 

Experience shows that it is often possible to model the communication channel as an FIR filter 

as well.  In a multipath environment successive reflections become weaker, and eventually drop 

below the noise floor.  Commonly, only a few of the strongest reflections are significant causes 

of ISI.  Unfortunately, the inverse of an FIR filter is always an IIR filter, and this means that an 

FIR equalizer will never be able to completely remove the ISI caused by an FIR channel.  We will 

find that even a very long FIR equalizer always leaves a small amount of residual ISI. 

 

Suppose that    y k y kT  represents the sampled output of the receiver’s matched filter.  

The parameter T  represents the time between samples and also the time between 

transmitted symbols.  Recall from the eye diagram lab project that each sample  y k  is the 

sum of a desired sample value, ISI, and noise.  The block diagram representation of an FIR 

equalizer is shown in Figure 1. 

 



  128 

 

Figure 1.  An FIR Equalizer 

 

The output of the equalizer is denoted as  z k .  In the diagram, blocks designated 
1z  represent 

one-sample delay elements.  Arrows leading to multiplication by coefficients nc  are 

traditionally known as “taps,” and the coefficients themselves are known as “tap gains.”   This 

block diagram represents the equation 

    .
N

n

n N

z k c y k n


    (1) 

Our goal in designing an equalizer is to find values for the tap gains , ,N Nc c  that will 

minimize any residual ISI.  Even better, we would like to find a way to have the tap gains adjust 

themselves to reduce ISI as the equalizer runs. 

 



  129 

To provide a basis for adjusting the equalizer tap gains , ,N Nc c , the receiver must know 

what data the transmitter is sending.  Common practice is to begin transmission with a “training 

sequence” , 0, , 1k tb k N   that is known to the receiver.  In this lab project we will use the 

same 26-symbol sequence that we are already using for frame synchronization.  It is assumed 

that once the 26tN   symbol training sequence has been received, the tap gains will have had 

time to adjust themselves to nearly their optimum values.  Thus from this time on, the sequence 

 z k  should be nearly ISI-free.  Following the equalizer, the BPSK receiver performs detection 

and symbol mapping by comparing  z k  with a threshold of zero.  If ˆkb  represents the output 

data, then 

 
 
 

1, if 0
ˆ

0, if 0.
k

z k
b

z k


 


  (2) 

What will the receiver use as a basis for adjusting the equalizer tap gains once the training 

sequence is complete?  In a decision-directed equalizer, the decisions ˆkb  are used to replace the 

training sequence bits kb .  Even when the probability of error is relatively high (e.g. 0.01), the 

decisions ˆkb  are hardly ever wrong.  It turns out that an occasional incorrect tap gain 

adjustment causes little change in the ISI output of the equalizer.  Figure 2 shows the 

organization of the decision-directed equalizer. 

 

Equalizer

Adjust Tap

Gains

Switch when

training sequence

ends
 

Figure 2. Decision-Directed Equalizer 

There are a number of alternative criteria for deciding when the equalizer tap gains are 

optimally adjusted.  One possibility is to adjust the tap gains to maximize the eye opening.  It 

turns out, however, that equalizers have a tendency to amplify the noise that forms part of the 

input sequence  y k .  Maximizing the eye opening also tends to enhance the noise.  An 



  130 

alternative criterion minimizes the mean squared error between the sequence  z k  and the 

symbol sequence ka   based on kb .  Since the mean squared error includes both ISI and noise, 

this criterion is less prone to noise enhancement than methods that ignore noise.  Now if ka  is 

the symbol sequence corresponding to the training sequence bits kb , we can write the mean 

squared error E  as 

   
2

,kE z k a E   (3) 

where E  is the expectation operator.  Substituting Eq. (1) gives 

  
2

.
N

n k

n N

E c x k a


 
  

 
E   (4) 

 

If we were designing a fixed equalizer, we would find the tap gains , ,N Nc c  that minimize E  

in Eq. (4).  Instead, we want to find a way to let the tap gains adjust themselves.  Suppose 

   
, ,

q q

N Nc c  represent the values of the tap gains after the q -th update.  We can further update 

the tap gains according to the algorithm 

 
1 , , , , 0,1, .q q

n n

n

c c n N N q
c

 
     



E
  (5) 

This algorithm is an example of a steepest descent procedure, as it moves the coefficients in the 

direction of the negative of the gradient of the mean-squared error with respect to the 

coefficient values.  This is the direction of the steepest descent down the slope to the minimum 

of the mean-squared error.  The parameter   adjusts the step size.  We can evaluate the 

derivative nc E  by using Eq. (4): 

 

   

    

   

2

2

2 , , , ,

N

i k

i Nn

k

E c y k i a y k n
c

E z k a y k n

E e k y k n n N N



   
        

    

     


E

  (6) 

where     ke k z k a   is the error signal (including both noise and ISI) at index k . 

 

It turns out that the expectation operator in Eq. (6) poses something of a problem, since there is 

no way to evaluate it in an actual filter implementation.  We can avoid the problem by 

approximating the expectation by the current value.  That is, 



  131 

        .E e k y k n e k y k n       (7) 

Then the rule for updating the tap gains becomes 

    1 y , , , , 0,1, .q q

n nc c e k k n n N N q          (8) 

Normally we will update the equalizer tap gains after every received symbol.  Thus the index k  

and the index q  increment together.  We have 

    1 y , , , , 0,1, .k k

n nc c e k k n n N N k          (9) 

The procedure expressed by Eq. (9) is called the least mean square (LMS) algorithm for adjusting 

the equalizer tap gains.  We initialize the procedure by taking 

 
1, 0

0, otherwise.
n

n
c


 


  (10) 

A block diagram of the LMS adaptive equalizer is shown in Figure 3. 

 



  132 

Symbol

Mapping

 

Figure 3. LMS Adaptive Equalizer 

 

Note in Eq. (9) that if the step size   is small, the tap gain values will never change very much 

on a single update.  This means that the tap gain values at any time are the accumulated sums 

of many small adjustments.  Since accumulation is a form of averaging, Eq. (9) justifies our 

approximating the expectation operator by a single sample in Eq. (7).  Further, since the tap 

gains change very little each time they are adjusted, a single symbol error does not push the 

equalizer very far out of adjustment when decision feedback is in use. 

 



  133 

11.3 Pre-Lab  
1. For this lab project you will use the BPSK transmitter and receiver you created for the 

phase-shift keying lab project.  Be sure your receiver includes the Channel.gvi containing the 

channel model, and also includes the capability of displaying an eye diagram.  You may use 

either MT Format Eye Diagram from the Modulation Toolkit, or the eye diagram program 

that you created for the eye diagram lab project.  Wire the “ISI Channel Model” Channel.gvi 

input to a front panel control on your receiver. 

 

2. Create a program to perform adaptive equalization.  A template EqualizerTemplate.gvi has 

been provided to get you started.  The inputs to your equalizer are to be connected as 

follows: 

a. Input Complex Waveform input to Equalizer.gvi will be connected to Output 
Complex Waveform on the FrameSync(real).  This waveform has been aligned to the 
start of the frame, but has not been downsampled.  This waveform also includes the 
received header symbols that will be used to train the equalizer. 

b. Receiver Sampling Factor input to Equalizer will be connected to the number of 
samples per symbol parameter that is calculated in your BPSK receiver. 

c. Equalizer Length input to Equalizer should be connected to a control on your 
receiver front panel. 

 

In addition to the inputs and outputs, the equalizer template contains a copy of the training 

sequence, an array containing the symbol map, and a cluster of “feedforward equalizer 

parameters.”  These parameters include the number of equalizer taps per symbol (one), and the 

values of step size   to use during training and during decision-directed operation (0.05 during 

training, 0.001 in decision-directed mode). 

To complete the equalizer, you will need to add two functions from the Modulation Toolkit.  

These are MT Generate System Parameters from the 

AnalysisCommunicationsDigitalUtilities subpalette and MT PSK Feedforward Equalizer 

from the AnalysisCommunicationsDigitalEqualization subpalette. 

Click on the MT PSK Feedfordward Equalizer function then, from the Configure ribbon, choose 

PSK(M) for the MT Generate System Parameters.  Create a constant at the “PSK type” input and 

select “Normal.”  Wire your “Receiver Sampling Factor” to the “samples per symbol” input.  

Wire a constant of value 2 to the “M-PSK” input.  The only output of the MT Generate System 

Parameters that you will use is the “PSK system parameters” cluster.  Wire this to the Cluster 

Properties function provided in the template to replace the default symbol map with the symbol 

map provided.  The modified PSK system parameters cluster will be used by the MT PSK 

Feedforward Equalizer. 

 



  134 

From the Configure ribbon, choose Specify Length for the MT PSK Feedforward Equalizer.gvi.  

Wire up the “input complex waveform” and “PSK system parameters” inputs.  Wire the 

“equalizer length” input to the appropriate control.  Wire the “training bits” input to the training 

bits array provided in the template.  Wire “feedforward equalizer (LMS) parameters” to the 

cluster provided in the template.  The “reset” input can be left unwired, since it will default to 

the correct value of “true.”  Wire all of the outputs to the appropriate indicators and you are 

ready to go. 

3. Save your equalizer in a file whose name includes the letters “Equalizer” and your initials 

(e.g. Equalizer_BAB.gvi).   

4. Open the block diagram of your BPSK receiver.  Wire up the remaining inputs of 
FrameSync(real); that is, connect the “Input Signal” input to the “Aligned Signal” output of 
PulseAlign(real) and connect the “Receiver Sampling Factor” input to an appropriate 
location.  The “Sampled Input” FrameSync(real) input should remain connected to the 
output of Decimate. 

 
5. Add your equalizer to your BPSK receiver.  Wire the inputs as described in Step 2 above.  

During the lab you will be asked to take data to compare the eye diagrams before and after 
equalization.  Wire the “Equalized Complex Waveform” equalizer output to a second eye 
diagram display.  Also, wire the “Squared Error” output to a waveform graph indicator so 
that you will be able to observe the error decrease as the equalizer adapts.  Wire the 
“Output Bits” and “equalizer coefficients out” outputs to indicators. 

 

Questions 

1. The default impulse response provided by Channel.gvi when the propagation delay is set at 

100 s  is        0.2 1 0.08 2h n n n n       .  Taking the z-transform gives 

channel system function   1 21 0.2 0.08H z z z    .  An ideal equalizer will have a 

system function that is the reciprocal of the channel system function.  That is, 

  
1 2

1

1 0.2 0.08
eqH z

z z 


 
 . (11) 

Find an expression for the ideal equalizer impulse response  eqh n .  The coefficients of 

 eqh n  are the tap gains of an ideal (i.e. infinite length) equalizer.  Find numerical values for 

the first five tap gains 0 4, ,c c . 

 
2. You should find that the ideal equalizer in Question 1 has a causal impulse response.  The 

equalizer of Figure 3 can be non causal, if necessary.  As a non-causal example, repeat 

Question 1 for        0.1 1 0.3 2h n n n n       .  Find numerical values for 4 4, ,c c

.  (Hint:  The ideal equalizer is an IIR filter.  While it need not be causal, it must be stable.) 

 



  135 

11.4 Lab Procedure 
1. Connect a loopback cable and attenuator between the TX 1 and RX 2 connectors of the 

USRP.  Connect the USRP to your computer and plug in the power to the USRP.  Run 

LabVIEW and open the transmitter that you created in the prelab. 

 

2. Ensure that the transmitter is set up to use 

Carrier Frequency:  915.0 MHz 

IQ Rate:  200 kHz.  Note:  This sets the value of 1 xT . 

Gain:  0 dB 

Active Antenna:  TX1 

Symbol rate:  10,000 symbols/s 

Message Length:  1000 bits 

Pulse shaping filter:  Root Raised 

 

Run the transmitter.  Use the large STOP button on the front panel to stop transmission 

connectors. 

 

3.  Ensure that the receiver is set up to use 

Carrier Frequency:  915.0 MHz 

IQ Rate:  200 kHz.  Note:  This sets the value of 1 zT .  Note that zT  is the same parameter 

as dt . 

Gain:  0 dB 

Active Antenna:  RX2 

Symbol rate:  10,000 symbols/s 

Message Length:  1000 bits 

Pulse shaping filter:  Root Raised 

Use Channel: off 

 



  136 

4. Run the transmitter, then run the receiver.  Once the receiver has acquired its data, you may 

stop the transmitter.  The receiver should show a BER of 0.0 or 1.0.  Do not be concerned 

about a BER of 1.0 in this lab project. 

 

5. Set the channel model for a propagation delay of 100 s  with the default channel model.  

Set Use Channel to “on.”  Set the “Equalizer Length” to 11.  Run the transmitter and then 

the receiver.  Once the receiver has acquired data, you may stop the transmitter.  Compare 

the eye diagrams before and after equalization.  Use cursors to measure wV  and bV  and 

calculate the eye opening for each case. 

 

6. Repeat Step 5 for propagation delays of 50 s  and 150 s .  Compare the eye opening 

before and after equalization for each case.  Prepare a table showing eye opening before 

and after equalization for each of the three propagation delays. 

 

7. Set the propagation delay of the channel back to 100 s  and run the transmitter and 

receiver.  Observe the “Squared Error” equalizer output.  Approximately what value does 

the squared error reach in steady state? 

 

8. At a propagation delay of 100 s  and an equalizer length of 11, record the values of tap 

gains 4 4, ,c c .  Compare with the values you computed in Prelab Question 1.  (Do not 

expect extremely close agreement.  The prelab calculations were for an infinite-length 

equalizer.  Further, the adaptive equalizer tap gains are constantly being adjusted around 

their optimal values.  Try running the receiver a few times to see how much variation there 

is in the steady-state tap gains.) 

 

9. Change the ISI channel model to the model given in Prelab Question 2.  Keep the 

propagation delay at 100 s  and the equalizer length at 11.  Run the transmitter and 

receiver.  Check the eye diagrams to verify that the equalizer is working.  Record the values 

of tap gains 4 4, ,c c .  Compare with the values you computed in Prelab Question 2. 

 

10. With the propagation delay set at 100 s  and using either of the two channel models, 

measure the eye opening after equalization as the equalizer length is increased in odd-

numbered steps from 1.  At what equalizer length does the eye opening stabilize? 



  137 

 

11. Phase Synchronization Revisited.  You may recall from the BPSK lab project that any phase 

difference   between the transmitter and receiver oscillators will produce a factor  cos   

in the demodulated signal.  This factor affects the amplitude of the demodulated signal, 

and can also affect its polarity.  It turns out that the equalizer can remove this phase error 

just as if it were a channel impairment.  To see this happen, make the following changes to 

your receiver: 

a. The MT PSK Feedforward Equalizer includes a threshold comparator and symbol 

mapper.  The output bits that the equalizer produces are available at the Output Bits 

output of Equalizer.gvi.  Your receiver should have an Array Subset function following 

the threshold to limit the received bit sequence to the proper frame length.  Replace 

the wire running from the threshold comparator to Array Subset function with a wire 

from the equalizer Output Bits. 

 

b. The output bit sequence from the equalizer includes the 26-bit frame header.  To 

remove this header, set the index input to Array Subset function to 26 instead of 0. 

 

Run the transmitter and the receiver.  You should get a BER of 0.  Try running the 

receiver with Use Channel both off and on.  You should get a BER of 0 every time, 

showing that the phase ambiguity caused by the phase correction algorithm has been 

removed. 

c.    Now remove the phase synchronizer entirely.  Figure 4 shows an expedient way to do 
this. 

 
 

 
 

  

Figure 4.  Remove the Phase Synchronizer 

 
 
Run the transmitter and receiver again.  Use Channel can be off or on.  The BER 
should be zero every time. 
 



  138 

Questions 

1. Answer the questions from Lab Procedure Steps 6 through 10. 

 

11.5 Report 

Prelab 

Hand in documentation for your equalizer program and your modified receiver that includes the 

equalizer and a second eye diagram.  Also include documentation for any functions you may 

have created.  To obtain documentation, print out legible screenshots of the front panel and 

block diagram. 

Answer all of the questions in the Prelab section marked Questions. 

Lab 

Submit your equalizer program and your revised receiver program.  Also submit any functions 

you created.  Be sure your files adhere to the naming convention described in the instructions 

above. 

Resubmit documentation for any functions you modified during the lab. 

Answer the questions in the Lab Procedure Steps 6 through 10.  Comment on your success in 

using the equalizer as a phase synchronizer in Step 11. 

 

  


