
 99

 L A B 9

Binary Phase-Shift
Keying (BPSK)

 100

Prerequisites: Lab 5 – Double-Sideband Suppressed Carrier, Lab

7 – Amplitude-Shift Keying

9.1 Objective
In phase-shift keying (PSK), information is encoded on the phase of the transmitted carrier,

rather than on its amplitude (ASK) or its frequency (FSK). In binary phase-shift keying (BPSK)

there are two phase values, 0 and 180 , which means that an unmodified carrier is

transmitted to represent one binary data value, while an inverted carrier is transmitted to

represent the other binary data value.

BPSK is the digital version of double-sideband suppressed-carrier analog modulation. We will

see that the BPSK transmitter and receiver have a DSB-SC transmitter and receiver at their

core. The additional features such as symbol mapping, pulse shaping, matched filtering,

threshold detection, and pulse and frame synchronization that are needed in ASK and FSK

systems are also needed in PSK systems. Just as in DSB-SC, the absence of a transmitted

carrier leads to a reduction in power needed for a given level of performance. BPSK is optimum

among binary systems in providing the lowest average power needed for a given bit error rate.

BPSK is easily extended to quadrature phase-shift keying (QPSK) and quadrature amplitude

modulation (QAM), as we shall see in a subsequent lab exercise. These extensions allow

transmission of multiple bits per pulse and can be very effective for transmitting data at high

rates over a channel of limited bandwidth.

Demodulating a BPSK signal requires synchronizing the phase of the received signal. Phase

synchronization was also encountered in the DSB-SC lab project. We will see that the

difficulties of phase synchronization can be avoided, at a small performance penalty, by using

differential encoding of the transmitted data. Differential binary phase-shift keying (DPSK) is a

robust and efficient modulation method that is widely used in practice.

9.2 Background
The generation and detection of an analog DSB-SC signal is discussed at length in the

background section of Lab 5: Double-Sideband Suppressed-Carrier. It is strongly suggested that

this material be reviewed at this point.

 101

Transmitter

A binary phase-shift keyed signal is a train of pulses, each of the form

    cos 2 .TX cAg t f t  (1)

In Eq. (1), A is a constant that sets the transmitted power level,  TXg t is a fixed pulse shape,

cf is the carrier frequency, and  takes a value of either 0 or 180 to carry the desired

information. Note that we can also write Eq. (1) as

    cos 2 ,TX cAg t f t (2)

where the plus sign corresponds to 0   and the minus sign to 180   . We will assume, as

in the previous digital signaling lab projects, that a new pulse is transmitted every T seconds,

so that the symbol rate is 1 T symbols/s. For a binary scheme such as BPSK, the bit rate is the

same as the symbol rate. Since the pulse  TXg t does not carry information, its shape can be

chosen to satisfy other criteria. As was the case with ASK, we desire a pulse shape that provides

a rapid spectral rolloff and minimizes intersymbol interference. We will use the “root-raised-

cosine” pulse shape, as we did in the ASK lab.

The steps needed to form a BPSK signal should be familiar if you have completed the ASK lab

project:

1. Symbol Mapping. The input data arrives as a stream of bits. Recall that the MT Generate

Bits function produces an array of bytes containing the numbers 1 and 0. In the symbol

mapping step, the bits are replaced by numerical values. For BPSK we will represent a

binary 1 by the complex double 1 0j and a binary 0 by the complex double 1 0j  . Note

that we are representing bits by complex numbers, even though the imaginary parts are

zero. This is because the USRP requires a complex-valued input, and because in a future lab

we will use the imaginary part to carry additional data. Table 1 shows the BPSK symbol

mapping.

Table 1. BPSK Symbol Mapping

Bit Value Symbol

 102

0 1 0j 

1 1 0j

2. Upsampling. As a first step toward replacing symbols with pulses, we will place 1L 

zeros after each symbol. This produces a sample interval of

 ,x

T
T

L
 (3)

or a sample rate of

1 1

.
x

L
T T

 (4)

A higher upsampling factor L makes the D/A conversion in the transmitter easier, but

requires faster digital processing.

3. Pulse Shaping. If the upsampled signal is applied to a filter whose impulse response  TXg n

is a root-raised-cosine pulse, then each symbol at the filter output will be represented by a

root-raised-cosine pulse. Steps 1 through 3 convert the input bit stream to a polar message

signal. Note that pulse shapes other than root-raised-cosine can be used simply by

changing the shape of the impulse response  TXg n . The root-raised-cosine pulse has a

very rapid spectral rolloff, so that the transmitted signal will not cause interference to

signals at nearby carrier frequencies.

4. Modulation. The polar message signal, consisting of a train of pulses of the form

   1 0 TXj g n  , can be sent directly to the USRP transmitter. The USRP will convert the

signal to continuous time and add the carrier as shown in Eq. (2).

 103

Receiver

A PSK receiver begins with a DSB-SC demodulator. When the transmitted BPSK signal arrives

at the receiver it has the form of a train of pulses, each given by

      cos 2 ,TX cr t Dg t f t    (5)

where D is a constant (usually much smaller than the constant A in the transmitted signal)

and the angle  represents the difference in phase between the transmitter and receiver carrier

oscillators. If the receiver’s carrier oscillator is set to the same frequency as the transmitter’s

carrier oscillator, the USRP receiver will do most of the work in demodulating the BPSK signal.

The receiver’s Fetch Rx Data will provide a train of output pulses, each given by

     .
2

j

TX

D
r n g n e   (6)

The sampling rate in Eq. (6), 1 zT , is set by the receiver’s “IQ rate” parameter. This rate is set to

provide M samples every T seconds, where 1 T is the symbol rate.

We can remove the phase offset  using any one of a variety of techniques. The technique used

in the DSB-SC lab project works well. To summarize, we begin by squaring  r n , giving

    
2

2 2 2 .
4

j

TX

D
r n g n e  (7)

This step eliminates phase changes caused by the data, as well as phase changes caused by

changes in the polarity of  TXg n . Next, the angle 2 can be extracted using a Complex to

Polar function from the Data TypesNumericComplex palette. It turns out to be helpful at

this point to smooth variations in 2 caused by noise. The median filter (AnalysisSignal

ProcessingFiltersSpecial Filters) does a good job. The default values can be accepted for

the “left rank” and “right rank” parameters. Next the Unwrap Phase from the AnalysisSignal

ProcessingConditioning palette will remove jumps of 2 . Finally, dividing by two gives the

desired estimate of the phase error  . The block diagram in Figure 1 shows the entire phase

synchronization process.

 104

Figure 1. Carrier Phase Synchronization

The remaining steps carried out by the receiver should be familiar from the ASK and FSK labs.

These steps are:

1. Matched Filtering. We will use a root-raised-cosine receiver filter. This filter’s impulse

response  RXg n is matched to the pulse shape  TXg n of the received pulses. The

matched filter gives optimum performance in the presence of additive, white, Gaussian

noise. Further, the cascade of the two root-raised-cosine filters  TXg n and  RXg n

produce a raised-cosine pulse shape that is free from intersymbol interference.

2. Pulse Synchronization. The matched filter output is an analog baseband signal that must

be sampled once per symbol time, i.e. once every T seconds. Because of filtering,

propagation delays, and distortion caused by the communication channel, it is necessary to

determine the optimum time to take these samples. A function called PulseAlign(real) has

been provided to align the baseband signal so that the sample at index 0 is the correct first

sample.

3. Sampling. The Decimate function will sample the aligned baseband waveform at index 0

and every T seconds thereafter.

4. Detection. Once the baseband waveform has been sampled, each sample must be

examined to determine whether it represents a symbol of value 1 or a symbol of value 0.

 105

5. Symbol Mapping. The detected symbol values must be converted to bits. For binary PSK,

this step is easily included in the detection step.

9.3 Pre-Lab

Transmitter

1. Create a program to generate a BPSK signal using the USRP. A template for the transmitter

has been provided in the file BPSKTxTemplate.gvi. This template contains the four

functions for interfacing with the USRP along with MT Generate Bits from the Modulation

Toolkit. MT Generate Bits will create a pseudorandom sequence of bits that can serve as a

data sequence for testing your BPSK system. Note that by default, MT Generate Bits will

produce the same sequence of bits every time you run the program. This is useful for

debugging, but if you would like to generate a different sequence of bits every time, wire a

random number to the “seed in” input. The steps below contain details about how to create

the required transmitter.

2. First do the symbol mapping, as shown in Table 1.

3. Upsample the array of symbols using Upsample from the AnalysisSignal

ProcessingConditioning subpalette. In this lab project you are given control inputs to set

the symbol rate 1 T and the IQ rate 1 xT . Set the symbol rate to 10,000 symbols/s and the

IQ rate to 3200 10 Sa/s . Use the symbol rate and coerced IQ rate to calculate the

upsampling factor L .

4. Use MT Generate Filter Coefficients from the Modulation Toolkit to generate the pulse

shaping filter. (MT Generate Filter Coefficients can be found on the Analysis

CommunicationsDigitalUtilities subpalette.) Set the modulation type to PSK, and the

pulse-shaping filter “samples per symbol” to your calculated value of L . Create a front-

panel control for “pulse shaping filter” and set this to “Root Raised.” Wire the “pulse

shaping filter coefficients” output to the “Y” input of a Convolution. The Convolution is

available from the AnalysisSignal ProcessingOperation subpalette. Wire the output

from your upsampler to the “X” input of the Convolution.

 106

5. Normalize the amplitude of your filtered message signal to a maximum absolute value of 1.

The Quick Scale 1D function in the ExternalFiles folder will find the maximum of the absolute

value. To ensure that your scaled message remains complex-valued, use a separate division

function to do the actual scaling. Connect the scaled message to the Build Waveform

function that connects to the Baseband Waveform graph provided in the template. Also

send the scaled message to the Write Tx Data function.

6. To observe the spectrum of the transmitted signal, wire the complex baseband waveform

to the Power Spectrum for 1 Chan(CDB) that connects to the Power Spectrum graph

provided in the template.

This completes construction of the BPSK transmitter. Save your transmitter in a file whose

name includes the letters “BPSKTx” and your initials (e.g. BPSKTx_BAB.gvi).

Receiver

1. Create a program to implement a BPSK receiver using the USRP. A template for the

receiver has been provided in the file BPSKRxTemplate.gvi. This template contains the six

interface functions for interfacing with the USRP.

Calculate the “number of samples” for the Fetch Rx Data function to fetch using the

message length, symbol rate front panel inputs and the coerced IQ rate. Double the

number of samples the receiver will fetch to acquire two frames of data. Since the

receiver’s starting point is random, this ensures that there will be one complete frame of

received data in the block of samples fetched.

Implement the carrier phase synchronization as shown in Figure 1.

2. To implement the receiver’s matched filter, use MT Generate Filter Coefficients just as you

did for the transmitter. Set the modulation type to PSK, and calculate the “matched

samples per symbol” M from the “actual IQ rate (1 zT)” and the symbol rate (1 T)

obtained from the front-panel control. Create a front-panel control for “pulse shaping

filter” and set this to “Root Raised.” Wire the “matched filter coefficients” output to the “Y”

input of a Convolution. The output of your pulse shaping filter should be connected to the

 107

Cluster Properties function provided in the template. The Cluster Properties function feeds

the Baseband Output graph.

3. Place the PulseAlign (real) function from the ExternalFiles folder on your block diagram and

wire the baseband output waveform to the “input waveform” input and wire the M

samples/symbol to the “receiver sampling factor” input.

Once the baseband waveform is aligned, it can be sampled. The Decimate (single shot)

function can be obtained from the AnalysisSignal ProcessingConditioning subpalette.

The “decimating factor” is M .

4. The Modulation Toolkit function MT Format Eye Diagram has been provided in the receiver

template. Wire the baseband output waveform to the “waveform” eye-diagram input. The

“symbol rate (Hz)” input value is available from the front panel control. Set the “eye length”

parameter to 2.

5. To determine whether each received sample is more likely to represent a 1 or a 0, the

sample must be compared with a threshold. Because the message is a polar signal, the

threshold can be taken as zero. The result of this comparison is the receiver’s digital output.

The output of the comparison will be a Boolean array. You can convert this array to an

integer array by using a Boolean To Integer function.

This completes construction of the BPSK receiver. Save your receiver in a file whose name

includes the letters “BPSKRx” and your initials (e.g. BPSKRx_BAB.gvi).

Questions

1. In Transmitter Step 3 you are given 1 10,000 symbols/sT  and
31 200 10 Sa/sxT   .

Find the corresponding value for the number of samples per symbol L .

2. Eq. (6) in the Background section above shows that the received baseband signal  r n

includes a factor je  , where  is any phase difference that may exist between the

transmitter and receiver carrier oscillators. Explain what would happen if you omitted the

 108

phase synchronization step in the receiver. Specifically, what would be the receiver output

if  just happened to take the value 2 ?

3. In Receiver Step 2 the “actual IQ rate” 1 zT may be different from the rate 1 xT that was

used at the transmitter. (Note that the symbol rate 1 T must be the same at the

transmitter and receiver.) The value of the receiver’s IQ rate determines the receiver

sampling factor M . What is the advantage to using a higher value of M ? What is the

advantage of using a lower value of M ?

4. Although BPSK is a suppressed-carrier version of ASK, we do not use an envelope detector

to demodulate BPSK the way we did for ASK. Why is that? What would the receiver output

be if we used an envelope detector for demodulation?

5. Bit error rate is a measure of performance of a digital communication system. What would

the bit error rate be if the transmitter failed and the receiver received only noise? Explain

your reasoning.

9.4 Lab Procedure
1. Connect a loopback cable and attenuator between the TX 1 and RX 2 connectors of the

USRP. Connect the USRP to your computer and plug in the power to the USRP. Run

LabVIEW and open the transmitter that you created in the prelab.

2. Ensure that the transmitter is set up to use

Carrier Frequency: 915.0 MHz

IQ Rate: 200 kHz. Note: This sets the value of 1 xT .

Gain: 0 dB.

Active Antenna: TX1

Symbol rate: 10,000 symbols/s

Message Length: 1000 bits

Pulse shaping filter: Root Raised

 109

Run the transmitter. Use the large STOP button on the front panel to stop transmission

connectors.

3. After running the transmitter, observe the spectrum of the transmitted signal. Measure the

“main lobe” bandwidth of the transmitted signal. Change the pulse shaping filter control to

“none” to create rectangular pulses and run the transmitter again. Compare the spectrum

of the transmitted signal with the spectrum for root-raised-cosine pulses. Return the pulse

shaping filter control setting to “Root Raised.”

4. Ensure that the receiver is set up to use

Carrier Frequency: 915.0 MHz

IQ Rate: 400 kHz. Note: This sets the value of 1 zT .

Gain: 0 dB

Active Antenna: RX2

Symbol rate: 10,000 symbols/s

Message Length: 1000 bits

Pulse shaping filter: Root Raised

5. Run the transmitter, then run the receiver. Once the receiver has acquired a block of data,

you may stop the transmitter.

6. Observe the eye diagram. Make note of the optimum sampling time and the presence or

absence of intersymbol interference. To see the effect of pulse synchronization, move the

waveform input of MT Format Eye Diagram to the “aligned waveform” output of

PulseAlign(real). Run the transmitter and receiver again. Observe the eye diagram. What is

the optimum sampling time now?

7. Modify the transmitter to include the AddFrameHeader(real), available in the

BasicUSRPLabs folder. Place AddFrameHeader(real) after the symbol mapping, but before

conversion of the symbols to complex. Next, modify the receiver to include the

FrameSync(real), also available from the BasicUSRPLabs folder. Place FrameSync(real)

 110

immediately following Decimate. Wire the output of Decimate to the “Sampled Input” of

FrameSync(real). Leave the remaining inputs of FrameSync(real) unwired. Wire the

“Aligned Samples” output of FrameSync(real) to the threshold comparison function.

Wire the array of output bits from the threshold comparison to the “array” input of an Array

Subset function. Set the “index” input to zero, and set the “length” input to the length

specified by the “message length” control. Display the output of Array Subset function as

“Output bits” on the receiver front panel.

Note that the “Output Signal” and “max index” outputs of FrameSync(real) will not be used

in this lab project.

8. Automate measurement of the bit error rate (BER) by using the MT Calculate BER from the

Modulation Toolkit (Analysis CommunicationsDigitalMeasurements subpalette).

From the Configure ribbon, choose “PN Fibonacci.” Set the “BER trigger threshold” to 0.4.

Connect indicators to the “BER” and “trigger found?” outputs. When you run the program,

“trigger found?” will be true whenever the measured BER is below the BER trigger

threshold.

Run the transmitter and receiver. If everything is working correctly, the BER should be 0 or

1.0. Run the transmitter and then run the receiver a dozen times or so. Verify that about

half the time the BER is 0 and about half the time the BER is 1.0.

Questions

1. How do the main lobe bandwidth and spectral rolloff rate for root-raised cosine pulses

compare with the same quantities when rectangular pulses are used?

2. What does a BER of 1.0 signify? Explain why the BER is 0 half the time and 1.0 half the time.

Differential Encoding

Suppose the data bits are passed through the logic circuit shown in Figure 2 before being sent

to the transmitter. In this circuit, the exclusive-nor gate will produce a 0 whenever the current

 111

input differs from the previous output, and a 1 whenever the current input is the same as the

previous output.

Q

Q
SET

CLR

D

Figure 2. Differential Encoder

For example, an input of

 1 0 1 1 0 0 0 1

produces an output of

 0 0 1 1 1 0 1 0 0 ,

assuming that the flip-flop has an initial state of 0. Now suppose that the received bit sequence

is passed through the circuit shown in Figure 3. The output will be a 1 whenever the current

Q

Q
SET

CLR

D

Figure 3. Differential Decoder

input and the previous input are the same, and the output will be a 0 whenever the current input

and the previous input are different. For example, a received bit sequence of

 0 0 1 1 1 0 1 0 0

produces an output of

 1 0 1 1 0 0 0 1 .

We see that the decoder of Figure 3 reverses the effect of the encoder of Figure 2. The

important part of this is to notice what happens if the received bit pattern is inverted. If the

received bit sequence is

 1 1 0 0 0 1 0 1 1 ,

“same” and “different” are not altered, and so the decoder output will still be

 1 0 1 1 0 0 0 1 .

 112

9. Add a differential encoder to your BPSK transmitter and a differential decoder to your

receiver. Place the encoder immediately after MT Generate Bits, before the symbol

mapping. Place the decoder after the threshold. Note that your transmitted sequence will

have to be made one bit longer to include the initial state of the encoder flip-flop.

Hint: The D flip-flop creates a one-sample delay. The delay is easily implemented in

LabVIEW using a Feedback Node function from the Programming Flow palette.

10. Run the transmitter and then run the receiver a dozen times or so. You should find that the

BER is always zero.

Differential Encoding, Part 2

Differential encoding can be done after the symbol mapping.

Table 2 is a truth table showing the correspondence between the exclusive-nor operation and

ordinary multiplication. We will see below that the differential encoding allows the phase

synchronizer to be eliminated from the receiver circuit.

Table 2. Exclusive Nor and Numerical Multiplication

Boolean Numerical

Input Output Input Output

0 0 1 1 1 1

0 1 0 1 1 1

1 0 0 1 1 1

1 1 1 1 1 1

11. Implement the differential encoder numerically. Place the encoder in your transmitter

following AddFrameHeader(real). (This time the frame header also gets encoded.) Do not

forget to add the initial state of the encoder to the beginning of the transmitted sequence.

 113

Save your transmitter in a file whose name includes the letters “DPSKTx” and your initials

(e.g. DPSKTx_BAB.gvi).

12. In the receiver, remove the phase synchronizer and run the received data directly to the

Convolution that implements the matched filter. Place the differential decoder immediately

after Decimate, the receiver’s sampler, and before FrameSync(real). Since the received data

are complex-valued at this point, design your decoder to form the product of the current

sample and the complex conjugate of the previous sample. Then take the real part of the

result. You may also need to replace PulseAlign(real) with PulseAlign(Complex).

Save your receiver in a file whose name includes the letters “DPSKRx” and your initials (e.g.

DPSKRx_BAB.gvi).

12. Run the transmitter and then run the receiver several times. Verify that the BER is always

zero.

Questions

1. Show that the differential encoder of Figure 2 and the differential decoder of Figure 3

continue to work properly as a system if the encoder’s flip-flop has an initial state of 1.

2. Show, starting with Eq. (6), why the phase synchronizer is not needed in the DPSK receiver.

3. In the BPSK system, the eye diagram has the same amplitude every time you run the

receiver. In the DPSK system, the amplitude of the eye diagram changes on every run.

Explain why this happens. Explain whether, if noise were present, the BER would also

change every time the DPSK receiver is run.

7. Differential phase-shift keying is intended to be robust in the presence of a phase difference

between the transmitter and receiver oscillators. It is also possible for there to be a

frequency difference between the oscillators. Suppose there is a small frequency difference

of f between the transmitter and receiver oscillators. Modify Eq. (6) to take this

frequency difference into account. How will the output of the DPSK receiver change

 114

because of this frequency difference? Using the parameter values of this lab project,

determine how large a frequency difference will be “significant.” Be sure to specify what

you mean by “significant.”

9.5 Report

Prelab

Hand in documentation for the programs you created for the transmitter and receiver. Also

include documentation for any functions you created. To obtain documentation, print out

legible screenshots of the front panel and block diagram.

Answer all of the questions in the Prelab section marked Questions.

Lab

Submit the program you created for the transmitter and receiver. Include both the BPSK and

DPSK programs. Also submit any functions you created. Be sure your files adhere to the

naming convention described in the instructions above.

Submit documentation for the DPSKTx and DPSKRx programs. Resubmit documentation for

any functions you modified during the lab.

Answer all of the questions in each of the Lab Procedure sections marked Questions above.

