
MAISTS: Mutual Authenticated IoT-to-Smartphone
communication with a Trusted Server

Philip Oguchi
School of Computing

University of Nebraska–Lincoln
eoguchi2@huskers.unl.edu

Uyen Tran
School of Computing

University of Nebraska–Lincoln
ktran21@huskers.unl.edu

Abstract—Secure and effective authentication mechanisms
have grown more crucial as IoT and smartphone device usage has
increased. This paper presents a simple, lightweight authentica-
tion technique that guards against man-in-the-middle and replay
attacks. We use symmetric key and asymmetric key encryption
and decryption. We formally analyze our protocol’s correctness
and robustness using Proverif. Our investigation also shows that
our protocol has excellent performance and complexity and
guarantees message integrity and confidentiality.

Index Terms—Mutual authentication, IoT security, hash func-
tions, message integrity, confidentiality.

I. INTRODUCTION

The Internet of Things has changed our communication
with our environment and physical devices. These devices
can be smartphones, cameras, soil sensors, or others. As the
number of IoT devices grows, security becomes a significant
challenge to ensure the protection of sensitive shared data
shared and an end-to-end guarantee of security. Many IoT
devices need to be connected to the Internet to work, making
them more vulnerable to various cyber-attacks [1]. Many
commercial vendors do not consider security when building
these devices, which has resulted in damaging effects like
the Mirai Botnet DDOS attack on DNS infrastructure [2] and
several others. Due to several constraints of IoT devices like
battery, power, and memory limitations, it is challenging to
implement complex security protocols on these devices, which
makes them prone to attackers.

In this work, we concentrate on tackling the security issues
in an IoT system where resource-constrained devices are
connected to a trusted server through the internet and are con-
trolled and monitored by a smartphone. The smartphone must
also be connected to the trusted server using cryptographic
protocols. The mutual authentication between an IoT device
and the server, data integrity and confidentiality assurances
for the data received from the IoT device to the trusted server,
and mutual authentication between the smartphone user and
the trusted server are some of the problems we tackled.

We propose MAISTS: Mutual Authenticated IoT-to-
Smartphone communication with a Trusted Server. Our scal-
able approach guarantees message integrity, confidentiality,
and mutual authentication for IoT devices and smartphones.
MAISTS protocol is cryptographically and computationally
secured against replay attacks and man-in-the-middle attacks.

We perform security analysis to evaluate our protocol for
correctness and robustness under varying attack scenarios
using Proverif. We also compute the performance complexity
of our protocol. We establish that our protocol considers the
resource constraints of the IoT device, making the implemen-
tation more efficient.

The remaining sections of this paper are as follows. Section
2 presents the preliminary background of our work. Section
3 provides the network model and assumptions. Section 4
presents the MAISTS protocol. Section 5 presents the security
analysis. Section 6 provides automated security verification.
Section 7 provides the performance analysis, and Section 8
concludes our paper.

II. PRELIMINARY BACKGROUND

Before diving into the network model and the proposed
protocol, we briefly describe message integrity and mutual
authentication in this section.

A. Mutual authentication

Two parties must authenticate each other’s identities to
provide access to the resources. Mutual authentication is more
like a client-server authentication that performs a three-way
handshake protocol to authenticate the transmitter and receiver
fully. Mutual authentication provides an additional layer of
security which means a client can authenticate a server, and a
server can also authenticate a client. In our case, the client can
be an IoT device or a smartphone, and the server is a Trusted
server. Mutual authentication intends to reduce the risk of man-
in-the-middle attacks, reply attacks, and other types of cyber
threats. We assume that two communication parties already
have pre-shared keys, the public-private key pairs. Then we
implement mutual authentication [3] on them.

B. Message Integrity

During transmitting messages from the IoT device or Smart-
phone, ensuring that the message has not been tampered
with is necessary. Therefore, we introduced a method for the
receiver to have some form of guarantee that the message they
received is the same as the one that was transmitted. In this
paper, we use the Hash function for message integrity, which
takes in an input and outputs a fixed-size message digest. The
Hash function is a one-way function that makes generating the

1



original message infeasible. We assume that the receiver and
the sender already agree on a chosen Hash algorithm.

III. NETWORK MODEL AND ASSUMPTIONS

A. Network Model

1) Legitimate IoT Device (A): The legitimate device com-
prises a single lightweight IoT device, e.g., a camera or a smart
bulb, that gathers sensory data and sends it to the trusted server
via the internet. The legitimate device connects to a server via
symmetric key cryptography. The legitimate node (device) is
also scalable. Before establishing a session, the legitimate IoT
device needs to bootstrap secrets with the Trusted server.

2) The Trusted Server (T ): The server authenticates the
message it receives from the legitimate IoT device (A) and
the smartphone (P ). It also coordinates the IoT and the
smartphone to communicate securely. The connection to the
trusted server is via the internet.

3) Smartphone (P ): The smartphone can handle public key
cryptography. The user can operate the IoT device with the
smartphone through the trusted server via the internet.

B. Assumptions

In this work, we make the following assumptions:
1) There is no limit to the resources the trusted server can

handle.
2) The trusted server has the pre-shared keys for decrypting

and encrypting messages from the IoT device and the
smartphone.

3) There is a chosen Hash algorithm agreed by and shared
among all parties in the network.

C. Threat Model

Here, we consider an attacker (M) located anywhere and
can spoof the messages sent by either the legitimate IoT device
or the smartphone to launch a man-in-the-middle attack or a
replay attack to achieve its goal. There is no limit to what the
attacker knows about the system, but the attacker doesn’t have
the keys. The adversary may know the protocol and location
of the devices but does not have physical access to the devices.
We do not consider denial-of-service attacks and jamming
attacks as this is orthogonal to this work. We considered two
kinds of adversaries.

Adversary type 1 who attempts to perform a man-in-
middle-attack on A’s communication to T and P ’s communi-
cation to T .

Adversary type 2 who attempts to perform a reply attack
on A’s communication to T and P ’s communication to T .

IV. PROPOSED MAISTS PROTOCOL

We present the proposed mutual authentication and message
integrity protocol. The MAISTS protocol has two parts, the
first one provides mutual and message authentication between
the IoT device and the Trusted Server, while the second part
provides mutual authentication between the Smartphone and
the Trusted Server.

A. Protocol A: Mutual and message authentication between
the IoT device and the Trusted Server

Here, when IoT device and the trusted server wants to talk
to each other. They use simple symmetric key cryptography.
The communication flow diagram, as shown in Fig. 1 is as
follows.

Fig. 1. Mutual authentication between the IoT device and Trusted Server

1) The legitimate IoT device (A) generates a random nonce,
N1 encrypts it with its key kma, it gets the hash of N1

and kma, and sends the message and hash, (m,h) to the
trusted server (T ) through the communication channel.

2) T receives the message m, decrypts it with kma, and
compares the hash with what it has, hash(N1, kma)

?
= h,

if No, abort. Else, serverAccepts process, then T gen-
erates a new nonce N2, computes h2 and m2, and sends
it to A.

3) A receives (h2,m2) from T . It decrypts the message and
compares the hash (N2, N1, kma)

?
= h2, If No, aborts

process. Else, IoTdeviceAccepts process, then a new
nonce N3 is generated, and (m3, h3) is computed in a
similar fashion and sent through the channel to the T ,
then IoTdeviceTerminates process.

4) T receives (m3, h3), decrypts the message and com-
pares the hash(N3, N2X, kma)

?
= h3. If No, abort. Else,

serverTerminates process. A secured session is then
established and the protocol ends.

The protocol also includes a data integrity and confidentiality
guarantee when a message (msg) is sent from the legitimate
IoT device to the trusted server, as shown in Fig. 2.

1) A generates a random message (msg), gets its hash, and
encrypts the message and the hash with kma. A sends the
message, m to T .

2) T receives m, then decrypts the message using kma

and compares the hash (msg, kma)
?
= h2. If No, abort

process, else then accepts process.

2



Fig. 2. Data integrity and confidentiality between the legitimate IoT device
and the Trusted Server.

B. Protocol B: Mutual authentication between Trusted Server
and Smartphone

The mutual authentication protocol between the smartphone
and the trusted is based on public key cryptography. This is the
case because the smartphone has the capability to handle the
higher computational overhead of public key encryption and
decryption. The steps for the mutual authentication protocol
for a smartphone and a trusted server, as shown in Fig. 3, are
as follows.

Fig. 3. Mutual authentication between the Smartphone and the Trusted Server.

1) The smartphone (P ) receive a key puX and compare it to
the server public key puS it has. If yes, it then generates
a nonce N1 and encrypts the nonce and its public key
puP with puX to get m. It sends m to the trusted server
(T ).

2) T receives m, decrypts it with its private key, prS.
It generates a new nonce N2, then the serverAccepts
process. It encrypts N1, N2, puS, with the smartphone’s
public key puP to get m2. It sends m2 back to P .

3) P receives m2, it decrypts the message with puX . It
verifies that the nonce N1 in the decrypted message is
the same as the one it sent earlier, i.e., N1X

?
= N1

and the public key of the server puX2 from the de-

crypted message, puX2
?
= puS. If No, abort. Else,

smartphoneAccepts process. It encrypts N2 with puX2
sends m3 to T , then smartphoneTerminates its pro-
cess.

4) T receives m3, it decrypts it with its private key prS, and
compares if the nonce it has is the same with the one it
received, N2X

?
= N2 and also compares puX = puP

on its side then the serverTerminates its process. Now
that the secret values are shared, a secured session is
established.

V. SECURITY ANALYSIS

In this section, we first analyze the correctness of MAISTS,
followed by its robustness analysis against the adversary we
presented in Section III C. We implement our protocol using
proverif, an open-source automated tool for formally verifying
cryptographic protocols..

A. Correctness Analysis of MAISTS

For the correctness of MAISTS, we use the corresponding
assertion to prove that we are confident that our protocol is
correct and it meets its intended goal. We use corresponding
assertions to prove that our protocol works and is procedural
for the protocol execution.

1) Protocol execution: Here, we show that there is mutual
authentication between the smartphone and the trusted server.
We ensured that the assertion was true.

inj − event(smartPhoneTerms(. . .))

==> inj − event(serverAccepts(. . .)) = True, (1)

inj − event(serverTerms(. . .))

==> inj − event(smartPhoneAccepts(. . .)) = True.
(2)

So, for the Smartphone to terminate its process, the server
must accept, and for the server to terminate its process, the
smartphone must accept, which guarantees that our protocol
is correct and achieves mutual authentication.

Similarly, we show the mutual authentication between a
legitimate IoT device and the trusted server. The following
corresponding assertions must be true.

inj − event(IoTdeviceTerms(k))

==> inj − event(serverAccepts(k)) = True, (3)

inj − event(serverTerms(k))

==> inj − event(IoTdeviceAccepts(k)) = True, (4)

(3) and (4) show that for an IoT device to terminate its
process, the server must first accept, and for the server to
terminate its process, the IoT device must first accept. Finally,
we prove the correctness of our protocol for message integrity

3



and confidentiality when we send a message from the IoT
device to the trusted server.

event(NoChangeS(m1))

==> event(NoChangeA(m1)) = True. (5)

(1), (2), (3), (4) show that mutual authentication was achieved
between the smartphone and the trusted server and IoT device
and the trusted server. In contrast, (5) guarantees message
integrity and confidentiality between IoT device and the trusted
server. Therefore, our protocol is correct.

B. Robustness analysis of MAISTS

Here, we prove that MAISTS is robust against Adversary
type 1 and Adversary type 2 described in Section III

1) Adversary Type 1: The authentication in this protocol
depends upon the secrecy of the nonces on the ends of both
entities. An attacker (M) who tries to intercept communication
between the smartphone and the server and then impersonate
either of them to perform a man-in-the-middle attack would
fail if we ensure that the following assertions are True:

Query not attacker(secretAN1[]) is true, (6)

Query not attacker(secretAN2[]) is true, (7)

Query not attacker(secretBN1[]) is true, (8)

Query not attacker(secretBN2[]) is true. (9)

(6) and (7) prove the secrecy of the nonces on the devices’
end is protected. (8) and (9) show that an adversary cannot
compromise the secrecy of the nonces on the server’s end.

An adversary who wants to perform a man-in-the-middle
attack for communication between the IoT device and the
trusted server would fail because the attack doesn’t have access
to the secret key used by the IoT device and the assertion (3)
and (4) is true. (3) ensures that the server will only accept a
message from a legitimate IoT device if the message contains
a fresh nonce that has not previously been used. If an attacker
modifies the nonce, the server rejects it. (4) ensures that the
IoT device will only accept message from the server if the
message has the nonce which was used in the original message
from the IoT device. Any modification to this nonce will lead
to a rejection from the IoT device. Therefore this guarantees
the robustness of adversary type 1 for the IoT device and the
trusted server.

2) Adversary Type 2: An adversary Type 2, (M), who
records transmissions from the smartphone to the trusted
server and then retransmits it will fail because the (1) and
(2) is True. Assertion (1) ensures that the server only accepts
the termination from the Smartphone if it did not receive it
previously. Else, the server will reject the message. Similarly,
assertion (2) ensures that the smartphone only accepts the
terms from the server if it did not receive it previously. Else,
it will reject the message.

An adversary who wants to perform a replay attack for
communication between the IoT device to the server would
fail because of freshness on the nonces used by the IoT
device and the server. Since the server only accepts messages
containing fresh nonces, an attacker can only generate new
nonces with access to the IoT device’s secret key, which
is unknown to him. Assertion (3) and (4) is true, and
(Query not attacker(test[])is false) to ensure the attacker
does not have access to the secret key used by the legitimate
IoT device.

VI. AUTOMATED SECURITY VERIFICATION

We implemented the security properties of MAISTS using
experimentation on a formal verification tool called Proverif.
We also tested the correctness of our protocol in Section V.
We modeled the smartphone and the IoT device separately,
as shown in (3) and (1). We explained the corresponding
assertions, observations, and verification in detail in Section V.
The simulation scripts are attached to the deliverables for this
course.

VII. PERFORMANCE ANALYSIS

Here, we show computational complexity for MAISTS for
the communication between smartphone and server and IoT
device and server. If we assume using the universal hashing,
the worst case is O(n) [4] where n is the size of the message.
Similarly, the complexity of symmetric key encryption and
decryption is also proportional to the message size, hence
taking up to O(n). The computations for asymmetric cryptog-
raphy are more expensive. Public-private key generation uses
resources up to O(m3), where m is the key size. Encryption
and decryption are computationally expensive and depend
on the key size. Hence the complexity is O(m2). Thus the
complexity of the proposed protocol is O(n + m3). Overall
our computational complexity is reasonable.

VIII. CONCLUSION

We have established a reliable and secure protocol for secure
communication between an IoT device, a trusted server, and a
smartphone. MAISTS addresses several security concerns like
reply attacks and man-in-the-middle attacks. It also guarantees
message integrity and Confidentiality. MAISTS is lightweight,
simple, and practical, making it suitable for deployment in
various IoT systems. We use a formal analysis with Proverif
to show the robustness and correctness of MAISTS. In the
future, we plan to scale this protocol to achieve multiple IoT
devices in a distributed way.

REFERENCES

[1] S. Sicari, A. Rizzardi, L. A. Grieco, and A. Coen-Porisini, “Security,
privacy and trust in internet of things: The road ahead,” Computer
networks, vol. 76, pp. 146–164, 2015.

[2] The Guardian. (2016) DDoS attack that disrupted internet was largest
of its kind in history, experts say. [Online]. Available: https://www.
theguardian.com/technology/2016/oct/26/ddos-attack-dyn-mirai-botnet

[3] G. Lowe, “An attack on the needham- schroeder public- key authentica-
tion protocol,” Information processing letters, vol. 56, no. 3, 1995.

[4] M. Babka, “Properties of universal hashing,” 2010. [Online]. Available:
http://ktiml.mff.cuni.cz/∼babka/hashing/thesis.pdf

4


